MyMetabolon Login
© 2021 Metabolon, Inc. All rights reserved.
Metabolon Metabolon
  • Metabolomics
    • About Metabolomics
    • Our Process
    • Technology & Knowledgebase
    • Quality Assurance
    • Setting the Standard: The 4Cs
    • Our Latest Insights
  • Solutions
    • Column 1
      • Products & Services
        • Global Metabolomics
        • Lipidomics
        • Targeted Assays
        • Microbiome
        • Study Design & Consulting
        • Sample Preparation & Handling
        • Study Success Sample Handling Kit
        • Reporting & Interpretation
        • Bioinformatics
        • MyMetabolon Client Portal
    • Column 2
      • By Research & Development Phase
        • Discovery & Target Selection
        • Lead Candidate Selection
        • Preclinical
        • Clinical Development
        • Manufacturing & Bioprocessing
    • Column 3
      • By Therapeutic Area
        • Cardiovascular Disease
        • COVID-19
        • Diabetes
        • Gastrointestinal
        • Liver Disease
        • Neuroscience
        • Oncology
        • Renal & Urological Disorders
        • Respiratory Disorders
    • Column 4
      • By Sector
        • Academic
        • Agriculture
        • Biotech / Pharmaceutical
        • Precision Medicine
        • Nutrition
        • Personal Care & Cosmetics
        • Population Health
        • Veterinary & Animal Health
  • Insights
    • Our Latest Insights
    • Blog
    • News & Events
    • Publications
  • Resources
    • Resource Library
    • Client Stories
    • COVID-19
    • Publications
  • Company
    • About Us
    • Working With Us (FAQ)
    • Leadership
    • Careers
    • Strategic Partnering
    • News & Events
    • Contact Us
MyMetabolon
Demo Our Data
Metabolon
Demo Our Data
Publication

Publication

Kennedy, AD, et al. Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. J Mass Spectrom 53, 1143-1154 (2018)

Metabolomics is the untargeted measurement of the metabolome, which is composed of the complement of small molecules detected in a biological sample. As such, metabolomic analysis produces a global biochemical phenotype. It is a technology that has been utilized in the research setting for over a decade. The metabolome is directly linked to and is influenced by genetics, epigenetics, environmental factors, and the microbiome-all of which affect health. Metabolomics can be applied to human clinical diagnostics and to other fields such as veterinary medicine, nutrition, exercise, physiology, agriculture/plant biochemistry, and toxicology. Applications of metabolomics in clinical testing are emerging, but several aspects of its use as a clinical test differ from applications focused on research or biomarker discovery and need to be considered for metabolomics clinical test data to have optimum impact, be meaningful, and be used responsibly. In this review, we deconstruct aspects and challenges of metabolomics for clinical testing by illustrating the significance of test design, accurate and precise data acquisition, quality control, data processing, n-of-1 comparison to a reference population, and biochemical pathway analysis. We describe how metabolomics technology is integral to defining individual biochemical phenotypes, elaborates on human health and disease, and fits within the precision medicine landscape. Finally, we conclude by outlining some future steps needed to bring metabolomics into the clinical space and to be recognized by the broader medical and regulatory fields.

Keywords: Clinical Laboratory Improvement Amendments (CLIA); College of American Pathologists (CAP); assay development; biochemical phenotype; biochemistry; biomarker; chromatography; clinical; laboratory developed test (LDT); longitudinal analysis; mass spectrometry; metabolomics; quality control; validation.

See Publication
Back to Resource Library
  • GS-0976 Reduces Hepatic Steatosis and Fibrosis Markers in Patients with Nonalcoholic Fatty Liver Disease
    Previous ProjectGS-0976 Reduces Hepatic Steatosis and Fibrosis Markers in Patients with Nonalcoholic Fatty Liver Disease
  • Next ProjectMicrobially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1
    GS-0976 Reduces Hepatic Steatosis and Fibrosis Markers in Patients with Nonalcoholic Fatty Liver Disease

Metabolomics

  • About Metabolomics
  • Our Process
  • Technology & Knowledgebase
  • Quality Assurance
  • Setting the Standard: The 4Cs
  • Insights & Discoveries

Solutions

  • Products & Services
  • By Research & Development Phase
  • By Therapeutic Area
  • By Sector

Insights

  • Our Latest Insights
  • Blog
  • News & Events
  • Publications

Resources

  • Resource Library
  • Client Stories
  • COVID-19

Company

  • About Us
  • Working With Us (FAQ)
  • Leadership
  • Careers
  • Strategic Partnering
  • News & Events
  • Contact Us
Metabolon - Logo - Enlightening Life

Metabolon provides actionable biological insights to answer the toughest questions in life sciences research and drug development.

© 2022 Metabolon, Inc. All rights reserved. Privacy & Terms

in
Copy